Un sistema basat en intel·ligència artificial diagnosticarà patologies per imatge mèdica

731

Actualitat Diària

L’Institut de Física Corpuscular (IFIC), centre mixt del Consell Superior de Recerques Científiques (CSIC) i la Universitat de València (UV), desenvolupa, amb finançament de la Agència Valenciana de la Innovació (AVI), un prototip per al desplegament i validació de sistemes d’ajuda al radiodiagnòstic basats en models d’Intel·ligència Artificial, que facilitaran la interpretació de troballes i evidències clíniques en imatges radiològiques tant en hospitals públics com en centres de salut i petites clíniques privades.

El projecte, batejat com Dirac, està liderat pel IFIC, que col·labora per a la seva execució amb la Fundació FISABIO i l’Institut de Telecomunicacions i Aplicacions Multimèdia (iTEAM), de la Universitat Politècnica de València (UPV). A més, compta amb el suport de la AVI, en el marc de la convocatòria d’ajudes en concurrència competitiva corresponent a 2020.

Dirac proposa una metodologia basada en minicontroladores que faciliten la implementació de models d’Intel·ligència Artificial (IA), capaces de interoperar amb els formats d’imatge mèdica de manera autònoma, segura i eficient. La incorporació d’aquesta tecnologia al sector de la salut no sols millorarà la productivitat i la precisió i interpretació de la imatge mèdica, sinó que reduirà també els costos operacionals.

En l’actualitat, ja s’estan desenvolupant models de IA per a la detecció automàtica de patologies a partir de radiografies de tòraxs. En concret, i en el marc de la pandèmia, s’han dissenyat i integrat algorismes que detecten l’afecció pulmonar per COVID-19 de manera primerenca, en el marc d’un projecte de l’Institut de Salut Carles III del qual el IFIC ha resultat també beneficiari.

Per a dur a terme aquesta iniciativa, aquest centre de recerca ha fet ús d’una de les majors col·leccions d’imatges radiològiques etiquetades en el món, que pertany al Banc d’Imatge Mèdica de la Comunitat Valenciana, que gestiona la Fundació FISABIO. Així mateix, per a l’entrenament eficient i validació de models d’aprenentatge profund (Deep Learning) i Intel·ligència Artificial es compta amb Àrtemis, la plataforma de computació del IFIC amb una elevada capacitat de càlcul dedicada al desenvolupament d’aquests models.

Solució per a tot tipus d’usuaris

En la pràctica, la Intel·ligència Artificial, com a disciplina aplicada a la medicina, ofereix múltiples avantatges vinculats a l’augment de la productivitat dels serveis sanitaris o a la reducció dels costos d’operació. No obstant això, l’adopció d’aquestes tecnologies es troba encara amb algunes barreres en el sector sanitari com, per exemple, la interoperabilitat amb els diferents sistemes d’imatge mèdica o el cost d’implantació en clíniques de petita grandària.

Precisament per a superar aquestes dificultats, el projecte Dirac tracta de mostrar noves vies per a l’adopció, implantació i posada en producció de la IA en el sector de la imatge mèdica de manera transparent i eficient, tant per als processos de diagnòstic i seguiment de pacients per part dels professionals sanitaris, com per als sistemes d’informació dels centres sanitaris.

Està enfocat específicament perquè pugui ser utilitzat per petites clíniques que, per costos d’operació, no entren en els recursos proporcionats per grans operadores, però també per a petites empreses integradores de solucions que vulguin personalitzar i monetitzar directament les seves solucions de IA, o bé organitzacions que vulguin separar o personalitzar algorismes de IA, amb independència de solucions generalistes.

A més, l’ús de minicontroladores per a aquests desplegaments garanteix un consum d’energia òptim fins i tot en situacions de màxim rendiment, en comparació amb una altra mena de dispositius convencionals.

Dirac connecta amb l’Estratègia d’Especialització Intel·ligent de la Comunitat Valenciana, coneguda com RIS3, que coordina la Conselleria d’Innovació, Universitats, Ciència i Societat Digital. En concret, el projecte encaixa en l’eix de la Promoció de la salut i sanitat eficient, ja que aspira a promoure una sanitat intel·ligent promovent la millora i el desenvolupament de serveis i processos sanitaris eficients i proporcionant un servei d’ajuda al diagnòstic i interpretació radiològica de baix cost i alt rendiment.

Així mateix, també s’alinea amb les conclusions del Comitè Estratègic d’Innovació Especialitzat (CEIE) en Tecnologies Habilitadores promogut per la AVI, que aposta per tecnologies de visió artificial més robustes mitjançant el desenvolupament d’algorismes, preferentment, basats en Deep Learning.

Deixar resposta

Per favor, escriu el teu comentari!
Per favor, escriu el teu nom ací